Didem Gözüpek

Thesis Supervisor: Assoc. Prof. Fatih Alagöz

A Scheduling Model for Centralized Cognitive Radio Networks

In this thesis, we present a scheduling model for centralized cognitive radio networks. Our model consists of a set of schedulers that focus on the data transmission of the secondary users and determine with which frequency, time slot and data rate each secondary user will transmit to the cognitive base station. Common features of the schedulers are that all of them ensure that the primary users in the service area of the cognitive base station are not disturbed, no collisions occur among the secondary users, and reliable communication of the secondary users with the cognitive base station is maintained. Our schedulers differ from each other mainly in terms of their objectives. We propose schedulers that maximize the overall cognitive radio cell throughput, minimize the average scheduling delay of the secondary users, provide max-min, weighted max-min and proportional throughput fairness, maximize the number of secondary users that are satisfied in terms of throughput, and take the different delay costs of switching to different frequency bands into account. In addition to heuristic algorithms and simulation based studies, we also present a graph theoretic approach and prove several NP-hardness and inapproximability results, propose polynomial time graph algorithms as well as approximation algorithms.

PUBLICATIONS

Journals

Conferences
Defense Jury Members

Assoc. Prof. Fatih Alagöz
Prof. Özugür Barış Akan
Assist. Prof. Tınaz Ekim
Assist. Prof. Mordechai Shalom
Assoc. Prof. Tuna Tuğcu

Bogazici University
Koç University
Bogazici University
Tel Hai Academic College, Israel
Bogazici University

Defense Date: 02.05.2012